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An analysis of existing data on low Reynolds number flows strongly suggests that 
the conclusion of Simpson (1970) concerning the variation of von Khrnhn’s con- 
stant k with Reynolds number is not correct. This implies that Coles’ (1962) 
assumption of the validity of the logarithmic velocity profile at low Reynolds 
numbers is correct and, moreover, that the inference drawn by Coles and later 
authors regarding the presence of viscous effects in the outer layer is valid. The 
analysis shows that these viscous effects are not present in duct flows, so that they 
are presumably associated with the presence of a turbulent-irrotational inter- 
face; it is argued that the ‘viscous superlayer’ can affect a large part of the outer 
layer at low Reynolds numbers. The data analysis incidentally shows that the 
viscous sublayer is more strongly affected by shear-stress gradients or transverse 
wall curvature than is the rest of the inner layer. 

1. Introduction 
Coles (see Coles 1962; Coles & Hirst 1968) analysed the bulk of available 

measurements of turbulent boundary layers with low Reynolds number and in 
zero pressure gradients. He determined the surface shear stress from the velocity 
profile by assuming that the velocity in the inner layer (y/S 2 0.2) but outside the 
viscous sublayer (u,y/v 9 40) followed the usual logarithmic form 

where k = 0.41 and C = 5-0. Coles found that the velocity defect formula 

(ue - .)I% = fi(Y/S) (2) 

in the outer part of the boundary layer (y/S 5 0.2) was a function of the Reynolds 
number for momentum-thickness Reynolds numbers Re, of less than about 5000. 
In  particular, Coles’ ‘wake’ profile parameter IT, or &?Au/u,, where Au is defined 
in figure i, fell from about 0.6 at high Reynolds numbers to zero for Reynolds 
numbers of approximately 500. Note that Coles & Hirst’s 1968 analysis of the 
data of Wieghardt, which appears to be representative of the low Reynolds 
number data in general, gives slightly different results from the 1962 analysis and 
is presumably to be regarded as superseding the latter. Coles briefly discussed the 
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FIGURE 1. The ‘law of the wall’ and ‘law of the wake’ for a typical 

turbulent boundary layer. 

validity of the logarithmic law (1) and demonstrated that the surface shear stress 
deduced from it was within about 10% of that deduced from the momentum 
integral equation, at least in the case of the more reliable experiments. 

The modern derivation of the ‘mixing-length ’ formula, from which (1) follows 
by integration when r / p  = u: 3 r,/p, uses the assumption that the turbulent 
structure of the flow near the surface is unaffected by the flow further from the 
surface (Townsend 1961). This formula seems to be valid over a wide range of 
outer-layer conditions, and the Kkmh-Schoenherr skin friction formula 
derived from (1) and (2) is valid up to  very high Reynolds numbers. The outer 
layer and outer boundary conditions affect the inner layer primarily via the shear- 
stress gradient ar/ay in the inner layer, which is non-zero when the flow and/or 
pressure are functions of x. In a constant-pressure boundary layer at  Re, = 1000, 
the effect of arpy  is to reduce the velocity gradient at y/S = 0-1 by about 3 per 
cent from that in a true constant-stress layer; that is, the apparent value of k in (1) 
increases by 3 per cent. Townsend (1961) discusses certain anomalies in the turbu- 
lence structure (the ‘inactive motion’) but concludes that these effects are more 
important at high Reynolds numbers than at low ones and should not in any 
event alter the ‘mixing length’. The validity in the inner layer of the mixing- 
layer formula and the resulting logarithmic law is generally accepted while the 
source of the supposed outer-layer effects at low Reynolds number is primarily 
speculative. 

Simpson (1970) suggested that much larger changes in the logarithmic law 
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occurred at low Reynolds numbers. He showed that his own velocity profiles, and 
those of Wieghardt, for 1000 < Re, < 6000 collapse together, except in the 
viscous sublayer, when plotted as uIue versus y/S. Since u,/ue = ($5’,)hx Re;& 
approximately, it follows that k varies as ReBa, decreasing to  0-33 at Re, = 1000; 
G also varies. There is therefore a direct contradiction between the analyses of 
Wieghardt’s data by Coles (constant k) and by Simpson (variable k). Recently 
Cebeci & Mosinskis (1970), following Simpson, used values of k and C varying 
with Re, as part of the input to a method of calculating turbulent boundary 
layers and showed improved agreement with experimental data. On the other 
hand Herring & Mellor (1968), using a very similar calculation method, obtained 
improved agreement by letting the eddy viscosity in the outer layer depend on 
Reynolds number, leaving k and C unaltered. Again we have a direct contra- 
diction: it seems that the boundary-layer data currently available are not 
accurate enough to check the validity of the logarithmic law at low Reynolds 
numbers. Nevertheless, the question is of some importance, if only because of 
the implications for the inner-layer analysis in other situations. 

In $ 2 of this paper we present an analysis of data for flows in which Reynolds 
number effects on the inner layer are likely to be stronger than in a boundary 
layer, and thus easier to detect. The procedure adopted is to adjust k and the 
‘damping constant’ A+, which determines C ,  so as to optimize the agreement 
between the actual velocity profiles in the inner layer and those calculated from 
the mixing-length formula. The results show that C or its equivalent is Reynolds 
number dependent and that k appears to be a constant to good accuracy. It 
appears that even the variation of C is likely to  be small in boundary layers unless 
the influence of the outer layer is extremely large. 

Accepting that this is the best vindication of the logarithmic law that current 
data are likely to provide, it  is shown in $ 3 that velocity defect profilesin ducts do 
follow equation (2) at low Reynolds numbers even though the boundary-layer 
defect profiles do not. This paradox is at  once resolved if it is supposed that the 
Reynolds number (viscous) effects in the boundary layer are associated with the 
presence of an irrotational-turbulent interface and in particular with the V~SCOUS 

superlayer (Corrsin & Kistler 1955). A conservative estimate of the superlayer 
thickness suggests that it may occupy a large fraction of the outer region of 
a boundary layer at low Reynolds numbers, whereas it is of course absent in 
ducts. Another possibility, sensitivity to d8/dx, seems less plausible. 

In  $4,  the statas quo is restored by presenting an incidental result from the 
present analysis, showing that transverse curvature affects the viscous sublayer 
appreciably even when the ratio of sublayer thickness to radius of curvature is as 
small as 0.1. The flow in the inner layer but outside the sublayer is apparently 
unaffected by transverse curvature. Therefore, we have acquitted the inner layer 
of violating the logarithmic law at  low Reynolds numbers only to find evidence 
of its misbehaviour in other circumstances, admittedly less important ones. 
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FIGURE 2. Flow field geometry. 

2. Analysis of velocity proaes in low Reynolds number flows 
2.1. Calculation of the shear-stress profile 

A major difficulty in analysing low Reynolds number flows other than duct flows 
is that adequate measurements of the shear stress r are seldom available, so that 
r must be calculated from measured velocity profiles by using the equation of 
motion. Values of u, and du,/dx are also needed. In  duct flows (on which the 
conclusions of this paper mainly depend) u, is known from the pressure drop and 
du,/dx is zero, but in the other flows we have analysed u, has been obtained 
directly or indirectly from conditions in the viscous sublayer. Our velocity profiles 
calculated using the measured u, agree sufficiently well with the measured profiles 
in the sublayer to justify the u, values a posteriori. 

The assumption that the turbulent flow near a smooth solid surface (y/6 or 
y/a < 0.2) depends only on u,, y ,  p and v leads via similarity arguments and 
dimensional analysis to 

(3) = u,f2(5)7 

where 5 = ( % Y / V )  (1 +y/2aIi (4) 
and fi is a universal function of Q a is the radius of the bounding surface (see 
figure 2) and i takes on the values of 0 and 1 for two-dimensional and axisym- 
metric flow fields respectively. The axisymmetric formulation is presented by 
Willmarth & Pang (1970) as a recapitulation of prior unpublished work; like (3), 
it  is not uncontroversial, but should suffice for calculating the shear-stress profile 
from given velocity profiles. 

Equations (3) and (4) in conjunction with the momentum and continuity 
relations 

and 
a a 
- [(a + 
ax aY 

pu] + - [(a + y )i pv] = 0 
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yield an equation for the total (viscous plus turbulent) shear stress as a function 
of distance from the surface and a number of parameters. 

(l+y+/a+)ir+ = 1 +n+y+(l+y+/2a+)i+v$(u+-u$) 

We have 

where yf = yu,/v, a+ = au,/v, r+ = r/r,, n+ = (v/pu:)dp/dz 

v+ = v/u7, u+ = u/u,, ax+ = u, dxlv, 

and the subscript w denotes conditions at the wall. The gradient ar+/ay+ can be 
obtained from (5) or (7). Retaining terms of degree (i - 1) for clarity, we get 

Note that ar+/ay+ at given y+ is a function of n+, a+, v$ and d(logu,)/dx+. 

2.2. Optimization of the mixing-length distribution 

The total shear stress can be related to the velocity gradient via 

which can be taken as a definition of the ‘mixing length’ I, where I+ = uTl/v. The 
common assumption that I is proportional to y can be justified by local- 
equilibrium arguments within the inner layer but outside the viscous sublayer. 
Equation (9) has also been used in the viscous sublayer (which is not a local- 
equilibrium region because significant turbulent energy transport normal to  the 
surface occurs) but its status is simply that of a means of correlating data. 
Van Driest (1956) showed that, for the simple case r+ = constant = 72, experi- 
mental velocity profiles were well fitted throughout the inner layer by the 
semi-empirical form 

which tends to I +  = ky+ for large y+, and this form was used for cases where 
r+ + r& by Patankar & Spalding (1967) and Cebeci & Smith (1968). Closely 
similar expressions were used by Herring & Mellor (1968) and McDonald (1969). 
If r+ = T;, equation (9)) with the substitution (10)) integrates to give (1) for 
y+ > 10 (say), and the constant C depends uniquely on, and increases with, A+; 
A+ = 26 gives C = 5. If r+ $. rfw (i.e. ar+/ay+ $. 0) ,  (1) becomes more complicated, 
C or its equivalent depends on aT+/ay+ and there is no good reason to suppose 
that A+ remains equal to 26. However (as will be shown below) (9) with (10) still 
gives a good fit to experimental velocity profiles in the inner layer and the ‘profile 
parameters’ A+ and k are still useful measures of profile behaviour, A+ being 
more convenient for discussion purposes than C because of the different forms 
of (1) in different cases. 

4 FLM 53 

I+ = ky+{I - exp [ - r+ky+/A+]), (10) 
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In the present analysis, (9) rearranged in the form 

au+ (1  + 41+2~+)3 - I 
_.- 

ay+ - - 21- , 

with substitutions from (7) and (lo), has been integrated and fitted to a number 
of experimental velocity profiles in different turbulent wall flows at  low Reynolds 
numbers. k and A+ have been chosen to give the best fit in the region between 
the surface and the expected outer limit of validity of ( lo) ,  generally about 20 yo 
of the flow width; that is, the points at  large y+ in figures 3-8 have been ignored. 
The optimum values were found numerically by means of a logical search 
algorithm described by Huffman (1971). 

Simpson (1970) suggested that in the low Reynolds number boundary layer 
C (or A+) varied as k varied, in such a way as to give approximate similarity in 
y+, u+ co-ordinates in the logarithmic region, as well as (even more accurate) 
similarity in y/6, u/ue co-ordinatea. We regard his suggestion as far-fetched; the 
success of the local-similarity analysis for the inner layer in cases where the 
outer layer is highly turbulent makes it unlikely that the inner layer will depend 
on the outer layer in the less demanding case of a constant-pressure boundary 
layer. Even if one concedes that local similarity will eventually break down at 
Reynolds numbers so low that the flow is not completely turbulent, the chances 
of the effects on k and C extending to B, as high as 6000 and compensating each 
other so that the profile remains almost unchanged are remote indeed. It was 
remarked some time ago by Black & Sarnecki (1958) that different experimental 
determinations of k and C for a given flow can be quite widely (and randomly) 
scattered and yet agree closely on the velocity profile within the rather small 
logarithmic region. We could find no trace of a consistent trend of k with Reynolds 
number in the flows we analysed, even though some of them exhibited strong 
Reynolds number effects on A+; the optimum value of k seemed to be close to 0.41 
and so we adopted this constant value of k for the analysis presented here. This does 
not prejudge the question of changes in the logarithmic-law constants. If the 
value of k were varied but k assumed constant in the profile fitting process one 
would expect the optimum A+ to vary to compensate. If this optimum A+ were 
found to be constant even in the presence of rather stronger Reynolds number 
effects than those found in low Reynolds number boundary layers then the 
traditional assumptions of constant A+ (or C) and constant k would be confirmed 
with fairly high probability. This was found to be the case in the profile fits to be 
described below; A+ does, however, vary in flows subject to much stronger 
Reynolds number effects than the boundary layer. 

As long as the flow is fully turbulent, the leading parameter representing 
external effects on the inner layer and leading to departures from the form (1) is 
expected to be ar+/ay+ or, in plain symbols, (v/pu:) ar/ay; either this parameter 
or (v/& ap/dx or (v/ U,Z) d &/dx = (&)# (v/pu:) dpldx are commonly used in dis- 
cussions of reverae transition, which is the ultimate in ‘low Reynolds number’ 
effects. In  practice ar/ay is not quite independent of y in the inner layer of 
developing flows, so we have plotted the results of our data fits in figures 6-8 in 
the form 

u+ =f3(9+, @T+PY+)), (12) 
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FIUDRE 3. Fully developed channel flow (Patel & Head 1969). 0, (&+lay+) = -0.0049, 
A+ = 30; A, (aT+/ay+) = -0.008, A+ = 32; 0, (aT+/aY+) = -0.010, A+ = 36; 0, 
(aT+/ay+> = - 0.013, A+ = 45; 0, (&+lay+) = - 0.015, A+ = 61 ; A, (aT+/ay+) = - 0.017, 
A+ = 80; m, (aT+/ay+> = -0.019, A+ = 140; -, computed velocities. 

where the second parameter is the average shear-stress gradient over the range 
of integration of (1  l), defined by 

The effect of external conditions on U+ is transmitted either by (ar+/ay+) or by 
alterations in the uf boundary condition. Again (ar+/ay+) depends on n+, a+, v,+ 
and/or d log u7/dx+. 

The data of Patel & Head (1969) dealing with low Reynolds number flows in 
circular pipes and two-dimensional ducts are shown in figures 3 and 4. In  this 
case, the dimensionless shear-stress gradient is constant and equals - l/u+, 
where a is the pipe radius or the duct half-width. The duct Reynolds number 
based on the mean velocity, i.e. ZaUlv, can be related to (ar+/i3y+) and is approxi- 
mately - 30/(ar+/ay+) at the Reynolds numbers of interest. It can be seen that 
in fully developed duct flows equation (12) is independent of any inner-layer 
considerations since it simply states that the dimensionless velocity is a function 
of Reynolds number and position. In  other flows, the inner-layer arguments are 
sufficiently well established for us to accept &+lay+ as representing the major 
effect on external conditions on the inner layer even when a?+/@+ is not uniquely 
determined by the Reynolds number. This appears to be the case in practice and 
this behaviour is illustrated in figures 5-8. 

4-2 
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FIGURE 4. Fully developed pipe flow (Pate1 & Head 1969). (a) 0, (a?+/@+) = -0.0034, 
A+ = 31; A, (&+lay+) = -0-0042, A+ = 34; 0, (aT+py+) = -0~0065, A+ = 40; 
0, (a?+/@+) = -0-oo92, A+ = 52; 0 ,  (a?+/@+) = -0.011, A+ = 73; A ,  (ar+/ay+) 

A, (aT+/ay+) = -0.oo70, A+ = 39; 0, (a?+/ay+) = -0.oos9, A+ = 50;  0, (a7+/ay+) 
= -0.012, A+ = 130; -, computed velocities. (b) 0, (&+/a?/+) = -0400465, A+ = 33; 

= -0-010, A+ = 67; 0,  (a7+/8y+) = -0.012, A+ = 130; -, computed velocities. 
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FIGURE 5.  F d y  developed annular flow (Lawn 1968). 0, (&+lay+) = - 0.0015, A+ = 25, 

a+ = 780; 0, (87+/@+) = -0.0023, A+ = 24, a+ = 480; -, computed velocities. 

Yf 

FIGURE 6. Axisymmetric wall jet (Starr & Sparrow 1967). 0, (aT+/ay+) = -0.0050, 

= -0.0024, A+ = 18.0, a+ = 590; 0, (a7+/&+) = -0-0018, A+ = 21.0, a+ = 1000; 
-, computed velocities. 

A+ = 5.70, a+ = 180; A, (a7+/%+) = -0.0027, A+ = 13.0, a+ = 280; 0. (h+/@+) 

The above arguments lead one to expect that A+ will be a universal function 
of &+lay+. If it can be shown that A+ is virtually constant for  the small values of 
ar+/ay+ which characterize constant-pressure boundary layers, then the logarithmic 
law as used by Coles is  re-established. Figure 9 shows the variation of A+ for a series 
of two-dimensional flows, i.e. wall jets, channel flows and boundary layers. 
Since - ar+/ay+ is about in the inner Iayer ofa boundary layer for Re, M 1000 
and numerically less at higher Reynolds numbers, it can be concluded that A+ is 
virtually constant in boundary layers except perhaps at  the very lowest Reynolds 
numbers, where the flow may not be fully turbulent anyway. This completes our 
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FIGURE 7. Axisymmetric boundarylayer (Cebeci 1968). A, (ar+/ay+) = -0.00062, A+= 27, 

a+ = 1500; 0, (&+/a+) = -0.016, A+ = 29, a+ = 17; -, computed velocities. 

demonstration of the validity of the logarithmic law; it is not a perfect demonstra- 
tion but it does show that the primary effect of external influences on the inner 
layer is a change in A+ or C rather than a change in Ic (see the lowest three curves 
in figure 4 (a),  for instance). This seems to dispose of Simpson’s suggestion that C 
varies so as to preserve a close approximation to the original logarithmic profile 
as Ic varies; it is much more likely that k and C are constant in boundary layers 
at  low Reynolds numbers. 

3. Behaviour of the outer layer 
It can be seen from figures 10 and 11 that the velocity defect profiles in duct 

flows are virtually unaffected by Reynolds number outside the viscous sublayer 
[noting that (10) implies a constant value of T + ~ J +  rather than y+ for the edge of 
the sublayer if the two are different]. At the lower Reynolds numbers, the viscous 
sublayer is so thick that the region of collapse is very small; however, by noting 
that, in this range of Reynolds number, Re, is only about 0.07 of 2Ea/v, i.e. about 
- 2/ (a~+/ay+) ,  it  is apparent that the outer layer in a pipe or duct is unaffected 
by viscosity at  Reynolds numbers much less than those causing marked changes 
in the boundary-layer ‘wake component ’ characterized by II. 

Accepting the validity of the logarithmic law implies that the outer-layer 
Reynolds number effects first noted by Coles (1962) are indeed real. (Simpson’s 
result that u/ue = f(y/8) in the outer layer, coupled with a universal logarithmic 
law, implies that IIcc u,/u7cc Re;*, which agrees quite well with Coles’ variation 
for Re, > 1000, though not at  lower Reynolds numbers.) The most economical 
hypothesis suggests that the presence of these effects in boundary layers and 



A note on von K4rmcin’s constant 

1 10 100 10000 

Y+ 

55 
22 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

0 

u+ 

24 

22 

20 

18 

16 

14 

u+ 12 

10 

8 

6 

4 

2 

0 
1 10 100 1000 10 000 

Y+ 
FIQTJRE 8. Two-dimensional boundary layer (Julien et al. 1970). (a) I), (&+/&+) = - 0.018, 

v,’ = 0; -, computed velocities. (b)  H, (ar+/ay+) = -0.016, A+ = 44, n+ = -0.0034, 
v,’ = -0.037; A, (a+/%+) = -0.0048, A+ = 35, T+ = -0.0057, v,’ = 0; -, computed 
velocities. 

their absence from pipe and duct flows must be connected with the presence of 
an interface between the turbulent and irrotational flow in the former case and 
its absence in the latter case. This interface contains the viscous superlayer, 
wherein mean and fluctuating vorticity are communicated by viscous action to 
previously irrotational fluid. 

The average thickness of the superlayer, Ssup, is expected to depend, at least 
to  a Grst approximation, on the mean-square vorticity in the turbulence near the 

A+ = 67, T+ = - 0.0087, V: = -0.0047; 0, (a?+/&+) = - 0.0096, A+ = 4 0 , ~ +  = - 0.012, 
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FIGURE 9. The viscous length scale A+ for two-dimensional flows. Two-dimensional wall 
jet: 0, Bradshaw & Gee (1962). Fully developed channel flow: 0, Patel & Head (1969); 
.,Laufer (1950).Two-dirnensional boundarylayers: 0, BadriNarayanan&Ramjee (1969); 
0,  Julien et al. (1970). 
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FIGURE 10. Fully developed channel flow (Patel & Head 1969). 0, (&+lay+) = -0.0049; 

= -0.015; A, (&+/ay+> = -0,017; 4, (&+/a+) =-O.O19. 
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FIGURE 11. Fully developed pipe flow (Patel & Head 1969). (a) 0, (87+/CJy+) = -0.0034; 
A,  (%+jay+> = - 0.0042 ; 0, (a7+/ay+) = - 0.0065 ; 0, (&+lay+) = - 0.0092 ; e, (a7+/ay+) 
= - 0.011 ; A, (a7+/ay+) = - 0.012. ( b )  0, (a~+/ag+> = - 0.0046; a, (a7+/ay+> = - 0.0070; 
0, (&+/a+) = -0.0089; 0, (&+/ay+) = -0.010; 0, (a+/@+) = -0.012. 

superlayer, 2, and on the viscosity itself. In  locally isotropic turbulence, 
= e/v, where e is the energy dissipation rate, so that G,,,must be approximately 

proportional to the Kolmogorov length scale T,I = ( v3/e)a near the inner boundary 
of the superlayer. The ratio of the viscous sublayer thickness S,, to the value of 
7 a t  y+ M 40 is approximately 20; SsUp may also be significantly larger than the 
local 7, which in turn will be significantly larger than 7 near the sublayer because 
6 is less near the superlayer than near the sublayer. A conservative conclusion is 
that the superlayer is, at least, not much thinner than the sublayer. The sublayer 
is plane whereas the superlayer is distributed over a highly irregular interface. 
Indeed, the irregularity of the interface seems to increase at low Reynolds 
numbers, judging by the intermittency measurements and smoke photographs 
of Fiedler & Head (1966). Consequently, the fraction of the boundary-layer fluid 
that is occupied by the superlayer is much larger than S,,,/S. If S,,,/S is of the 
same order as S,,/S it is approximately 0.015 at Re, = 5000 and 0.1 at Re, = 600. 
Clearly, the superlayer may have a large influence on the outer layer at low 
Reynolds numbers, and possibly no part of the turbulence in the intermittent 
region (y/S > 0.4, say) will be independent of viscous effects. This seems the most 
likely cause of the variation of Coles’ Il with Re,. 

4. The effect of transverse curvature 
The apparently consistent differences in the values of A+ for two-dimensional 

and axisymmetric flow fields with large l a ~ ~ / & ~ + l  (see figure 12) combined with 
the apparent constancy of k suggest that transverse curvature may affect the 
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viscous sublayer. However it is generally accepted that transverse curvature 
does not affect the rest of the inner layer (recall that the ratio of the inner-layer 
thickness to the radius of curvature is independent of Reynolds number and tha,t 
many high Reynolds number experiments have confirmed that k is the same in 
circular pipes, plane-wall ducts and boundary layers). The value of (87+/8y+) at 
which the A+ values start to diverge corresponds to cYsub/a N 0.1 whereas the 
ratio of the inner-layer thickness to a is about 0-2. There being no obvious reason 
for the observed sensitivity of the viscous sublayer to transverse curvature, some 
additional data were analysed. These cases consisted of flows on convex surfaces, 
i.e. flows on the outside of circular cylinders, as well as on concave surfaces. The 
velocity profiles are plotted in figures 5 ,  6 and 7 and additional two-dimensional 
boundary-layer data are shown on figure 8. Figure 12 shows the trends of A+. 

The agreement between the measured and calculated velocity profiles in 
figures 5-8 is not as good as that of figures 3 and 4; however, it is of sufficient 
accuracy to ascertain the general trend of the A+ - ar+/ay+ relation. The annular 
duct, axisymmetric wall jet and axisymmetric boundary-layer data clearly show 
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a trend of A+ with &+lay+ in the opposite wnse to that found in pipes. Note that 
&+lay+ is dependent on the transverse curvature (see equation (8)) and is thus 
a suitable curvature parameter itself, at least in flows that change slowly with x. 

There are no straightforward explanations of the apparent curvature effect 
except the most obvious one that it is a real effect of curvature on the sublayer. 
The consistency of the trend from pipe to duct to annulus seems to rule out 
arguments based on differences between any two of these flows. A possible clue 
to the surprising sensitivity of the sublayer to transverse curvature comes from 
the observation (Kline et al. 1967; Gupta et al. 1971) of a tendency to transverse 
periodicity in the sublayer with a wavelength h given by u,A/v = r+ M 100. 
Moreover, A/a M 3S,,/a M 100(ar+/8y+); consequently, h/a is about 0.3, i.e. one 
transverse wavelength subtends about 20°, when significant curvature effects 
begin. This transverse scale is quite large when compared with the eddy length 
scales just outside the viscous sublayer, i.e. PSub M 16 when yf M 40, so that it is 
plausible that the sublayer is affected while the remainder of the inner layer is not. 

5. Conclusions 
The data analysis of $ 2  shows that the logarithmic velocity profile (1) is valid 

in a wide range of low Reynolds number flows if the dimensionless shear-stress 
gradient in the inner layer, (&-+lay+), is not much greater numerically than 
At larger values of (ar+/ay+) the best-fit value of the Van Driest damping 
constant A+ departs from its basic value of about 26 (figure 9) but the best-fit 
value of von Khrmhn’s constant k appears to remain at  0.41. Since A+ represents 
the effect of the viscous sublayer (it determines the additive constant C in (1)) it 
is implied that the viscous sublayer is more sensitive to external influences than 
the fully turbulent part of the inner layer; the generally accepted ‘local- 
equilibrium’ analysis for the inner layer (Townsend 1961) suggests that the first 
effect of external influences will be felt via ar/ay, and the consistency of results 
from different flows for @+lay+) less than 10-3 supports this. 

These results contradict Simpson’s (1970) suggestion that k and C (or A+) vary 
in a constant-pressure boundary layer for 1000 < Re, < 6000, because (ar+/ay+) 
is numerically less than throughout this range. We based our analysis on 
flows in which low Reynolds number effects are expected to be larger than in 
a boundary layer; the data for the boundary layer itself are not sufficient to reach 
a conclusion. Simpson’s analysis of Wieghardt’s data (Coles & Hirst 1968) contra- 
dicts that of Coles (1962) and either analysis produces a worthwhile improvement 
in calculations of low Reynolds number boundary layers. 

The discussion of 3 3 suggests that the breakdown of the velocity defect law (2) 
in the outer layer of a boundary layer at low Reynolds numbers (implied by the 
analyses of Coles and of Simpson) is attributable to the ‘viscous superlayer ’ at 
the interface separating turbulent and irrotational flow. In  pipe and duct flows 
there is no such interface and the defect law appears to hold at low Reynolds 
number. 

A warning not to credit the complete infallibility of the inner-layer similarity 
asguments is given by the differences in the best-fit values of A+ for different 
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flows at large values of (ar+/ay+> (figure 12). A+ appears to depend on the trans- 
verse curvature, though there is every reason to believe that k does not. Again it 
appears that the viscous sublayer is more sensitive to external influences than 
the fully turbulent part of the inner layer but the rea~ons for the effect of 
transverse curvature remain conjectures. 
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